The following graduate competencies for performing evoked potential studies (EP) have been established as the standards for the education of post-secondary students in neurodiagnostic technology (NDT) programs with an EP add-on. Employers can expect the graduates of a CAAHEP-accredited NDT with EP add-on program to demonstrate entry-level competency in the EP areas identified below.

CONTENT AREA

A. **The graduate provides a safe recording environment by:**
 1. verifying identity of the patient;
 2. cleaning electrodes after each procedure;
 3. following universal precautions for infection control;
 4. attending to patient needs appropriately;
 5. recognizing/responding to life-threatening situations;
 6. being certified to perform cardiopulmonary resuscitation;
 7. following laboratory protocols for sedation;
 8. complying with lab protocols for emergency and disaster situations;
 9. maintaining instrument/equipment in good working order; and,
 10. taking appropriate precautions to ensure electrical safety.

B. **The graduate establishes rapport with the patient and patient’s family by:**
 1. using personal communication skills to achieve patient relaxation/cooperation;
 2. explaining all test procedures including activation procedures;
 3. explaining the electrode application method (paste, collodion, etc.);
 4. interacting on a level appropriate to patient's age and mental capacity; and,
 5. maintaining respect and patient confidentiality.

C. **The graduate evaluates the patient to:**
 1. determine the patient's mental age, mental state, and comprehension level;
 2. accommodate for disabilities and/or special needs;
 3. note the patient's overall physical condition;
 4. decide appropriate method of electrode application;

D. **The graduate prepares a patient data sheet that includes:**
 1. patient information (name, age, ID number, doctor, etc.);
 2. procedure number, recording time, date, and graduates name or initials;
 3. significant, relevant medical history and clinical findings specific to the modality studied;
 4. patient’s mental, behavioral, and consciousness states;
 5. all patient medications; and,
 6. results of other clinical studies relevant to the EP modality being tested, such as audiogram for BAEP, visual field testing for VEP, and nerve conduction studies for SEP.

E. **The graduate follows a method of electrode application that includes:**
 1. measuring the patient’s head using the International 10/20 system and/or Queen's Square method of electrode placement as appropriate for the evoked potential;
 2. cleaning patient’s scalp and skin prior to electrode application;
 3. using standard disc type electrodes or needle electrodes, as appropriate;
 4. using additional electrodes or modified placements as needed or as indicated by lab policy;
 5. applying disc electrodes with paste or with collodion and electrolyte; and,
 6. verifying that electrode impedance’s are balanced and below 5000 ohms.

F. **The graduate verifies the integrity of the Evoked Potential instrument by:**
 1. calibrating with a square pulse of appropriate amplitude and using parameters that will be used for the recording;
 2. recognizing and correcting malfunctions seen with calibration, if possible;
 3. having all equipment checked for safety at least twice per year or more frequently as needed or as indicated by department policy; and,
 4. maintaining individual equipment logs (safety checks, break downs, repairs, and such).

G. **The graduate obtains a standard EP record that includes:**
 1. clearly resolved waveforms;
 2. at least two replications demonstrating consistency of latency and amplitude measurements;
 3. use of appropriate recording and stimulus parameters;
 4. additional electrode derivations and other techniques as needed to enhance or clarify the abnormality; and,
5. obligate peaks displayed according to recommended standard or department policy.

H. The graduate identifies and eliminates or reduces artifacts contaminating the waveforms by:
 1. checking the quality of the raw signal regularly or whenever needed;
 2. understanding the meaning and significance of artifact rejection;
 3. understanding the relationship of signal to noise ratio;
 4. recognizing whether the artifact is physiologic or non-physiologic;
 5. identifying source of the artifact (poor electrode application, malfunctioning stimulator, or positioning of cables);
 6. calculating frequency in Hz of rhythmic artifacts and understanding the effects of aliasing; proper grounding of the patient and equipment; and,
 7. enhancing signal to noise ratio by increasing the number of sweeps.

I. When the EP recording is finished, the graduate:
 1. removes electrode paste/glue from patient’s scalp, hair and skin;
 2. prepares a detailed test data worksheet that includes: montage; time and voltage calibration scales; filter settings; side stimulated; stimulus parameters-type, (polarity, rate, duration, delay, masking, intensity, and visual angle); number of trials averaged; polarity convention; and other modality-specific relevant information such as visual acuity, hearing thresholds, limb length and height;
 3. documents sedation used, dosage, and effect (if applicable);
 4. marks the obligate peaks and documents their latencies and amplitudes;
 5. prepares hard copy of the waveforms; and,
 6. stores information on electronic media according to department policy.

J. The graduate understands:
 1. recommended criteria for assessing evoked potential abnormalities and maturation of EP components, basic electricity and electronics concepts;
 2. basic functional neuroanatomy and neurophysiology;
 3. anatomy of EP systems and generators of EP components;
 4. medical terminology and accepted abbreviations
 5. EP correlates of certain clinical conditions such as neurologic, orthopedic, neurosurgical, and audiologic disorders;
 6. pathologic and non-pathologic factors affecting EPs;
 7. the technical aspects, electrical hazards, & recording techniques unique to hostile environments (ICU, OR, radiology suites);
 8. EP normative data; and,
 9. other knowledge as detailed in the ABRET Evoked Potential Technology Practice Analysis.

K. The graduate applies the principles and concepts of EP instrumentation to the recording by understanding:
 1. signal averaging and noise reduction;
 2. analog to digital conversion including amplitude resolution, sampling rate, analysis time, sampling interval (dwell time), and Nyquist frequency;
 3. the function of differential amplifiers including input impedance, common mode rejection, polarity convention, and gain;
 4. effects of stimulus & recording parameters on EP waveforms;
 5. electrode impedance and its importance; and,
 6. electrical safety.

L. The graduate maintains and improves knowledge and skills by:
 1. reviewing EP records with clinical neurophysiologist on a regular basis;
 2. reading journal articles and studying text books related to the field;
 3. attending continuing education courses in clinical neurophysiology; and,
 4. participating in quality assurance/improvement reviews.

M. The graduate records a technically adequate Brainstem Auditory Evoked Potential by:
 1. obtaining relevant audiologic, neurologic, and/or neurosurgical history, hearing loss, ear infections, dizziness, tinnitus, etc.;
 2. assessing the patient’s ear canals;
 3. establishing hearing thresholds;
 4. correlating elevations in thresholds with any existing hearing loss or conditions of ear structures;
 5. noting the results of prior hearing evaluations;
 6. using a montage derivation of vertex to ipsilateral and vertex to contralateral ears;
 7. choosing the appropriate timebase, number of stimuli, sensitivity and bandpass settings;
 8. choosing the appropriate click polarity, rate and intensity;
 9. expressing click intensity measures in equivalent units of dBSL, dBHL or dBSPL;
10. adequate resolution of obligate waves I, III, and V;
11. using techniques to enhance wave I resolution such as an ear to ear montage derivation or using an ear canal electrode or increasing stimulus intensity;
12. measuring and calculating the absolute latencies, amplitudes and interpeak intervals of obligate peaks;
13. masking of opposite ear and understanding its use and effects; and,
14. performing a latency intensity series for auditory assessment in infants & other patients whenever indicated.

N. The graduate obtains a technically adequate Somatosensory Evoked Potential (SEP) by:
1. obtaining relevant neurologic, orthopedic, and/or neurosurgical history or any other relevant pathway specific information such as the presence of peripheral neuropathy;
2. selecting appropriate timebase, sensitivity and bandpass settings;
3. applying the appropriate stimulating electrodes: active cathode over the nerve and anode placed distally;
4. properly grounding the patient to reduce stimulus artifact;
5. selecting current of sufficient intensity and duration to elicit a motor twitch from the appropriate areas of stimulation;
6. using a montage that records responses from multiple levels of the pathway such as peripheral nerve, spinal cord, subcortical, and cortical responses;
7. adequately resolving of the obligate components of Erbs Point, N13, P14, N18, and N20 of the median nerve SEP;
8. adequately resolving of the obligate components of popliteal fossa, lumbar, N34, and P37 of the posterior tibial nerve SEP;
9. marking waveforms & calculating the absolute latencies, amplitudes and interpeak intervals of the obligate components;
10. calculating peripheral nerve conduction velocity; and,
11. using additional techniques that clarify the abnormalities seen.

O. The graduate obtains a technically adequate Visual Evoked Potential (VEP) by:
1. obtaining relevant ophthalmologic and neurologic history;
2. using a montage that records responses from both hemispheres;
3. assessing the patient's visual acuity;
4. selecting an adequate check size and positioning the patient at a distance from the pattern stimulator appropriate for the desired visual angle;
5. close monitoring of the patient's attention during the test;
6. performing the study with the same parameters and conditions used for normative studies including ambient light, pattern luminance and contrast;
7. adequately resolving peaks N75, P100, N145;
8. adequately resolving a "W" shaped waveform;
9. measuring and calculating the absolute latency, amplitude, amplitude ratios and intraocular latency difference of P100;
10. using flash stimuli in selected patients when use of pattern reversal stimulus is not possible;
11. understanding the limitations of use of flash stimuli; and,
12. using hemifield testing when indicated to clarify asymmetries or other abnormalities.